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1 Overview

In the previous class, we used concentration inequalities to boost the success of decision
algorithms.

What if we tried to boost the success of an optimizer?

Definition 3.1 (Optimizer). An algorithm which seeks to maximize an objective function
f(x) over variable x in constraint set C, i.e. finding arg maxx∈C f(x).

Suppose algorithm A returns xout such that f(xout) ≥ OPT− ε with probability ≥ 2/3,
where OPT = max

x∈C
(f(x)). Like our previous constructions, we wish to construct A′ that

runs A O(log 1
δ ) times and succeeds with probability 1− δ.

Algorithm 1 Algorithm A′

1. Run A O(log 1
δ ) times.

2. Take the maximum of these outputs.

The probability that A′ fails is equal to the probability that all of the runs output results
such that f(xout) < OPT − ε, as the maximum output will also not be at least OPT − ε.
This occurs with probability at most

(
1− 2

3

)n
= 1

3n , which we bound by δ.

δ =
1

3n
(1)

n =
log 1/δ

log 3
(2)

Running A O(log 1
δ ) times as a part of A′ then produces a correct solution with probability

1− δ, as desired.

2 More concentration inequalities

Theorem 3.2 (Hoeffding’s inequality). Let {Xi}ni=1 be independent random variables such
that Pr(Xi ∈ [ai, bi]) = 1, with Mi = bi − ai. Then,

1. Pr(Xn − E(Xn) ≥ ε) ≤ e−2nε2/M2

2. Pr(Xn − E(Xn) ≤ −ε) ≤ e−2nε2/M2

3. Pr(|Xn − E(Xn)| ≥ ε) ≤ 2e−2nε
2/M2

.

1



where M = maxi(Mi).

We can take advantage of the following lemma, which we will not prove, to complete
the Chernoff bound in our proof for the first inequality in Theorem 3.2. The second bound
arises from negating the random variable, and exploiting symmetry, and the third bound is
just a union bound of the first two statements.

Lemma 3.3 (Hoeffding’s lemma). If random variable xi bounded in [ai, bi] with probability
1, then E(etXi) ≤ et2(b−a)2/8.

Proof. For the proof, we will first bound the moment generation function of Xn over t, which
we take from Hoeffding’s lemma. Then, we apply the generic Chernoff bound (P (X > a) ≤
inf
t>0

E(etX)
eta ), letting X = Xn − E(Xn) and a = ε.

Pr(Xn − E(Xn) > ε) ≤ inf
t>0

E(et(Xn−E(Xn)))

etε
= inf

t>0

E(e
t
n
(
∑
Xi−E(Xi)))

etε

≤ inf
t>0

∏
E(e

t
n
(Xi−E(Xi)))

etε

≤ inf
t>0

∏
e

t2

n2 (bi−ai)2/8

etε

≤ inf
t>0

e
t2

n
(b−a)2/8

etε

≤ inf
t>0

e
t2

n
(b−a)2/8−tε

We have the quadratic t2 (b−a)
2

8n − tε in the exponent, which will be minimum at t = 4nε
(b−a)2 .

Plugging this value of t back in as the right hand side and lettingM = b−a yields Hoeffding’s
inequality.

We now try to find the sample complexity for getting an error of at most ε with proba-
bility 1− δ using the sample mean. The probability of the error exceeding ε, by Hoeffding’s
inequality, is e−2nε

2/M2
, which we bound with δ.

log 2/δ =
2nε2

M2
(3)

n =
M2

2ε2
log 2/δ (4)

However, this bound is not always tight, even though the bound depends only on the
ratio M/ε and is (correctly) invariant to the same rescaling on M and ε. In any situation
where most of the mass is concentrated in one area with some small outlier, the bound is
not tight, as although M is large, making n large, the number of samples needed for the
sample mean to estimate the true mean is practically much smaller.

We can improve this with the next inequality.

Theorem 3.4. (Bernstein’s inequality) Let {Xi} be independent random variables such that
Pr(|Xi − E(Xi)| ≤M) = 1 and σ2 = Var(Xn), then

Pr(|Xn − E(Xn)| > ε) ≤ 2e−nε
2/(2σ2+2Mε/3)
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Figure 1: An example that makes the bound less tight.

The proof of this inequality is technical and was not covered in class, and will not be
included here. We can find the sample complexity for getting an error of at most ε with
probability 1 − δ in a manner similar to what was done with Hoeffding’s inequality. The
probability of the error exceeding ε, by Bernstein’s inequality, is 2e−nε

2/(2σ2+2Mε/3), which
we bound with δ.

log 2/δ = nε2/(2σ2 + 2Mε/3) (5)

n =

(
2σ2

ε2
+

2M

3ε

)
log

2

δ
(6)

Since this inequality takes into account both the width of the interval over which the random
variable is distributed and the variance of the random variable within the interval, it provides
a tighter bound on the sample complexity than Hoeffding’s inequality when σ is small in
comparison to M , as the complexity grows linearly with M instead of quadratically. When
σ is comparable to M , both provide asymptotically similar bounds that are quadratic in
M .

2.1 Comparison to CLT

By the Central Limit Theorem, Xn converges to N (µ, σ
2

n ) at large n, and we want to
(roughly) compute n such that Pr(Xn > µ+ε) ≈ δ/2. Using the approximation Pr(N (0, 1) >

ε′) ≈ e−ε′2/2 ⇒ Pr(N (µ, σ
2

n ) > µ+ ε) ≈ e−nε2/2σ2
, we find that n ≈ 2σ2

ε2
log 2/δ. Comparing

the last approximation to Bernstein’s, we see that Bernstein’s is larger.
We compare the sample complexity predicted by the Central Limit Theorem to what

was actually obtained from Bernstein’s inequality. There are three regimes.

Comparing ε to σ2

M
:

• ε � σ2

M
: In this case M/ε� σ2/ε2, so the sample complexity is not (remotely)

close to CLT.

• ε ≈ σ2

M
(up to constants): In this case M/ε ≈ σ2/ε2, close to CLT but beaten

by constant factor.
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• ε � σ2

M
: Here M/ε� σ2/ε2, so Bernstein’s sample complexity is comparable to

CLT.

Theorem 3.5. (Catoni 2012)1 In general, the sample complexity of sample mean is n =

Ω( σ
2

ε2δ
).

This bound is predicted by Chebyshev’s inequality (which would give a matching upper
bound, up to constants). It is exponentially weaker compared to the predictions of the
central limit theorem.

2.2 Summarizing what we know in one picture

Figure 2 shows what we know about the sample mean’s distribution, in one picture. Specif-

ically, we consider the distribution of
√
n
σ Xn, which has variance 1.

This distribution has a central region, of width O(1) around the true mean, which we
know for sure is “Gaussian-like up to a constant”. This is given by Chebyshev’s inequality.
More specifically, we can rephrase Chebyshev as Pr(|X −µ| > εσ) ≤ 1

ε2
. In this context, we

can say Pr(|X − µ| > O(1)σ) ≤ O(1).
Outside of this region, things can look arbitrarily bad. Even though the Central Limit

Theorem tells us that, as n → ∞, eventually the entire distribution must look Gaussian,
there is no way to guarantee how fast that happens (in terms of n) that applies to all
distributions. Put another way, in the previous paragraph, we know for sure that the
central region of O(1) width is Gaussian-like, and we know that the Gaussian-like region
will grow with n as n→∞ until it covers the entire number line (which is great!). However,
the speed at which the Gaussian-like region grows may be arbitrarily slow, depending on
what the underlying distribution is (not so great...).

Figure 2: Concentration of the sample mean

3 Median-of-means algorithm

This is, for now, our last attempt to match the Central Limit Theorem. Again, the goal
is to construct a new mean estimator that uses O(σ

2

ε2
log 1

δ ) samples, to get to ε estimation

1Link
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error with probability 1− δ.

Algorithm 2 Algorithm A′

1. Repeat the following O(log 1
δ ) time: Take the sample mean of σ2/ε2 samples (Xσ2/ε2).

2. Return the median of these outputs.

The analysis of median of means is straightforward: by Chebyshev’s, each sample mean
is within ε of the true mean with probability at least 2/3. The median trick from last class
boosts the success probability to 1− δ.

Even though the sample complexity of median-of-means is optimal (up to constants), in
practice, the estimator has terrible performance. In the last class we’ll discuss how to do
mean estimation well.

4 Takeaway

1. Don’t use the sample mean blindly, the common claims about what it does are mis-
leading.

2. Don’t blindly use concentration inequalities. Despite using more “elementary” tech-
niques (like Chebyshev’s) than Hoeffding’s and Bernstein’s, we produced a better (in
theory) algorithm with median-of-means.

3. Constant probability results can be useful sometimes, if applied correctly (for example,
the last algorithm).

4. Don’t use the last result in practice.
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